Showing posts with label cast. Show all posts
Showing posts with label cast. Show all posts

Cast Remote Display API Processing

| 0 comments |

Posted by Leon Nicholls, Developer Programs Engineer

Remote Display on Google Cast allows your app to display both on your mobile and Cast device at the same time. Processing is a programming language that allows artists and hobbyists to create advanced graphics and interactive exhibitions. By putting these two things together we were able to quickly create stunning visual art and display it on the big screen just by bringing our phone to the party or gallery. This article describes how we added support for the Google Cast Remote Display APIs to Processing for Android and how you can too.

An example app from the popular Processing toxiclibs library on Cast. Download the code and run it on your own Chromecast!

A little background

Processing has its own IDE and has many contributed libraries that hide the technical details of various input, output and rendering technologies. Users of Processing with just basic programming skills can create complicated graphical scenes and visualizations.

To write a program in the Processing IDE you create a “sketch” which involves adding code to life-cycle callbacks that initialize and draw the scene. You can run the sketch as a Java program on your desktop. You can also enable support for Processing for Android and then run the same sketch as an app on your Android mobile device. It also supports touch events and sensor data to interact with the generated apps.

Instead of just viewing the graphics on the small screen of the Android device, we can do better by projecting the graphics on a TV screen. Google Cast Remote Display APIs makes it easy to bring graphically intensive apps to Google Cast receivers by using the GPUs, CPUs and sensors available on the mobile devices you already have.

How we did it

Adding support for Remote Display involved modifying the Processing for Android Mode source code. To compile the Android Mode you first need to compile the source code of the Processing IDE. We started with the source code of the current stable release version 2.2.1 of the Processing IDE and compiled it using its Ant build script (detailed instructions are included along with the code download). We then downloaded the Android SDK and source code for the Android Mode 0232. After some minor changes to its build config to support the latest Android SDK version, we used Ant to build the Android Mode zip file. The zip file was unzipped into the Processing IDE modes directory.

We then used the IDE to open one of the Processing example sketches and exported it as an Android project. In the generated project we replaced the processing-core.jar library with the source code for Android Mode. We also added a Gradle build config to the project and then imported the project into Android Studio.

The main Activity for a Processing app is a descendent of the Android Mode PApplet class. The PApplet class uses a GLSurfaceView for rendering 2D and 3D graphics. We needed to change the code to use that same GLSurfaceView for the Remote Display API.

It is a requirement in the Google Cast Design Checklist for the Cast button to be visible on all screens. We changed PApplet to be an ActionBarActivity so that we can show the Cast button in the action bar. The Cast button was added by using a MediaRouteActionProvider. To only list Google Cast devices that support Remote Display, we used a MediaRouteSelector with an App ID we obtained from the Google Cast SDK Developer Console for a Remote Display Receiver.

Next, we created a class called PresentationService that extends CastRemoteDisplayLocalService. The service allows the app to keep the remote display running even when it goes into the background. The service requires a CastPresentation instance for displaying its content. The CastPresentation instance uses the GLSurfaceView from the PApplet class for its content view. However, setting the CastPresentation content view requires some changes to PApplet so that the GLSurfaceView isn’t initialized in its onCreate, but waits until the service onRemoteDisplaySessionStarted callback is invoked.

When the user selects a Cast device in the Cast button menu and the MediaRouter onRouteSelected event is called, the service is started with CastRemoteDisplayLocalService.startService. When the user disconnects from a Cast device using the Cast button, MediaRouter onRouteUnselected event is called and the service is stopped by using CastRemoteDisplayLocalService.stopService.

For the mobile display, we display an image bitmap and forward the PApplet touch events to the existing surfaceTouchEvent method. When you run the Android app, you can use touch gestures on the display of the mobile device to control the interaction on the TV. Take a look at this video of some of the Processing apps running on a Chromecast.

Most of the new code is contained in the PresentationService and RemoteDisplayHelper classes. Your mobile device needs to have at least Android KitKat and Google Play services version 7.5.71.

You can too

Now you can try the Remote Display APIs in your Processing apps. Instead of changing the generated code every time you export your Android Mode project, we recommend that you use our project as a base and simply copy your generated Android code and libraries to our project. Then simply modify the project build file and update the manifest to start the app with your sketch’s main Activity.

To see a more detailed description on how to use the Remote Display APIs, read our developer documentation. We are eager to see what Processing artists can do with this code in their projects.

Read More..

QuakeƂ III on your TV with Cast Remote Display API

| 0 comments |

Posted by Leon Nicholls, Developer Programs Engineer and Antonio Fontan, Software Engineer

At Google I/O 2015 we announced the new Google Cast Remote Display APIs for Android and iOS that make it easy for mobile developers to bring graphically intensive apps or games to Google Cast receivers. Now you can use the powerful GPUs, CPUs and sensors of the mobile device in your pocket to render both a local display and a virtual one to the TV. This dual display model also allows you to design new game experiences for the display on the mobile device to show maps, game pieces and private game information.

We wanted to show you how easy it is to take an existing high performance game and run it on a Chromecast. So, we decided to port the classic Quake® III Arena open source engine to support Cast Remote Display. We reached out to ID Software and they thought it was a cool idea too. When all was said and done, during our 2015 I/O session “Google Cast Remote Display APIs for Games” we were able to present the game in 720p at 60 fps!

During the demo we used a wired USB game controller to play the game, but weve also experimented with using the mobile device sensors, a bluetooth controller, a toy gun and even a dance mat as game controllers.

Since youre probably wondering how you can do this too, heres the details of how we added Cast Remote Display to Quake. The game engine was not modified in any way and the whole process took less than a day with most of our time spent removing UI code not needed for the demo. We started by using an existing source port of Quake III to Android which includes some usage of kwaak3 and ioquake3 source code.

Next, we registered a Remote Display App ID using the Google Cast SDK Developer Console. There’s no need to write a Cast receiver app as the Remote Display APIs are supported natively by all Google Cast receivers.

To render the local display, the existing main Activity was converted to an ActionBarActivity. To discover devices and to allow a user to select a Cast device to connect to, we added support for the Cast button using MediaRouteActionProvider. The MediaRouteActionProvider adds a Cast button to the action bar. We then set the MediaRouteSelector for the MediaRouter using the App ID we obtained and added a callback listener using MediaRouter.addCallback. We modified the existing code to display an image bitmap on the local display.

To render the remote display, we extended CastPresentation and called setContentView with the game’s existing GLSurfaceView instance. Think of the CastPresentation as the Activity for the remote display. The game audio engine was also started at that point.

Next we created a service extending CastRemoteDisplayLocalService which would then create an instance of our CastPresentation class. The service will manage the remote display even when the local app goes into the background. The service automatically provides a convenient notification to allow the user to dismiss the remote display.

Then we start our service when the MediaRouter onRouteSelected event is called by using CastRemoteDisplayLocalService.startService and stop the service when the MediaRouter onRouteUnselected event is called by using CastRemoteDisplayLocalService.stopService.

To see a more detailed description on how to use the Remote Display APIs, read our developer documentation. We have also published a sample app on GitHub that is UX compliant.

You can download the code that we used for the demo. To run the app you have to compile it using Gradle or Android Studio. You will also need to copy the "baseq3" folder from your Quake III game to the “qiii4a” folder in the root of the SD card of your Android mobile device. Your mobile device needs to have at least Android KitKat and Google Play services version 7.5.71.

With 17 million Chromecast devices sold and 1.5 billion touches of the Cast button, the opportunity for developers is huge, and it’s simple to add this extra functionality to an existing game. Were eager to see what amazing experiences you create using the Cast Remote Display APIs.

QUAKE II © 1997 and QUAKE III © 1999 id Software LLC, a ZeniMax Media company. QUAKE is a trademark or registered trademark of id Software LLC in the U.S. and/or other countries. QUAKE game assets used under license from id Software LLC. All Rights Reserved

QIII4A © 2012 n0n3m4. GNU General Public License.

Q3E © 2012 n0n3m4. GNU General Public License.

Read More..